Essays

友愛数を列挙する

友愛数を列挙する

Mathematicaで友愛数を列挙するプログラム例として以下のようなものが見受けられる。 yakuwa[n_] := DivisorSigma[1, n] - n; Do[If[(yakuwa[yakuwa[k]] == k) && (yakuwa[k] != k), Print[{k, yakuwa[k]}]], {k, 1, 1000}]; しかし、Doでループを回してPrintで書き出していくのはMathematica的に美しくないと思う。 Mathematicaなら関数型プログラミングとパターンマッチを用いるのが良いと思うので、私なら以下のように書く。 Cases[NestList[DivisorSigma[1, #] - # &, #, 2] & /@ Range[100000], {a_, b_, a_} /; a < b -> {a, b}] 実行速度もこちらの
折れ線を間引く(Ramer-Douglas-Peuckerアルゴリズム)

折れ線を間引く(Ramer-Douglas-Peuckerアルゴリズム)

読み込んだGPSログのデータを間引きたい、と思って調べたところ、 (Ramer-)Douglas-Peuckerのアルゴリズムというものがあることが分かった。

基本的な考え方は、

  1. 折れ線の始点と終点を結ぶ線分と各点の距離を求める。
  2. すべての点との距離が許容誤差$\varepsilon$以内に入っていれば始点と終点だけを返して終了。
  3. そうでなければ距離が最大の点Pを選択。
  4. 始点から点Pまでの折れ線と、点Pから終点までの折れ線のそれぞれについてまた1から処理する。

という再帰的なもの。

再帰的なものはMathematicaの得意分野なので、MathematicaでRamer-Douglas-Peuckerのアルゴリズムを実装してみた。